Dcvcloping Scalable Java
Applications with Cacheonix

Introduction

Presenter: Slava Imeshev

e Founder and main committer for open
source distributed Java cache Cacheonix
e Frequent speaker on scalability
— simeshev@cacheonix.org
— Www.cacheonix.org/blog/

Cacheonix

« An open source distributed Java cache

« Program your distributed applications as easy as
if they were singe-JVM applications, with APIs for:

» Distributed cache
« Strict data consistency
» Distributed HashMap
» In-memory data grid
» Distributed locks
« Distributed ConcurrentHashMap
» Distributed data processing
* Cluster management
» Open source (LGPL)

When Singlc Server s Not
f‘:nougln

e Sooner or later your application will have to
process more requests than a single server
can handle

e You need to distribute your application to
multiple servers (LAN, AWS, etc)

e A.K.A. horizontal scalability

Scaling Horizonta"9

=g

User Application

Cluster

—

User

Distributed Systcms

Processes communicate over the network
instead of local memory

Distributed programming is easy to do
poorly and surprisingly tricky to do well:

— The network in unreliable
— The latency varies wildly
— The bandwidth is limited

— Topology changes
— The network is nonuniform

Problems to be Solved bg
Distributed APPIications

Distributed aPpIication_s must address a lot of
concerns that don't exist in single-JVM applications

1. Scalability bottlenecks
Reliability

Concurrency

State sharing

Data consistency

Load balancing

Failure management

Make sure it is easy to develop!

XNV A WN

Horizontal Scalability

Horizontal scalability is an ability to handle
additional load by adding more servers

Horizontal scalability offers a much
greater benefit as compared to vertical
scalability (2-1000 times improvement in

capacity)

Bottleneck Problem

e Horizontal scalability is hard to achieve
because of ever-present bottlenecks

e A bottleneck is a shared server or a
service that:

All or most requests must go through

Request latency is proportional number
of requests (100 requests 1 ms/req.,
1000 requests 5 ms/req.)

Examples: Databases, Hadoop clusters,
file systems, mainframes

Bottleneck-Free Sgstcm

OK - Throughput 5,000 requests/sec

<

G.OOO requests/sec €,OOO requests/sec

/

az/

-

Application server
Users PP

Database

5,000 requests/second

10,000 requests/second

Sgstcms That Cannot Scale

BAD- Throughput is 10,000 requests/sec, not

Added 2 more app 15,000
servers ° <
Expected x3 | * -
INnCcrease In capacity it s
Got only x2 e

System hit
scalability limit

Ca aCity Of the - 5,000 requestasecond Capacity: 10,000 requests/sec
database or other

data source is a i

bottleneck

Application server

5,000 requests/second

Solution To Bottleneck Problem:
Distributed Cache

e (Cacheonix implements a distributed cache that
rovides a large clustered in-memory data store
or hard-to-get, frequently-read data

e The application is reading from the cache instead
of being stuck in reading from the slow database

Distributed Cache

Cacheonix provides:

Strict data consistency - the result of an

update Is iImmediately observed on all
members of the cluster

_oad balancing — cached data is distributed

evenly among servers as members join and
eave the cluster

High availability - Cacheonix provides

uninterrupted, consistent data access in
presence of server failures and cluster
reconfiguration

Distributed Cache

Cacheonix offers:

e (Cache coherence for strict data consistency
e Partitioning for load balancing

e Replication for high availability

e FEase of use: Standard java.util.Map interface

Distributed Cache

Cacheonix cache plugins for ORM frameworks:
e Hibernate

e MyBatis

e DataNucleus

Distributed Cache

Cacheonix cacheonix = Cacheonix.getInstance();

Cache<String, String> cache = cacheonix.getCache("my.cache");
cache.put("my.key", "my.value");

String value = cache.get("my.key");

Rcliabilitg Problem

Reliability is an ability of the system to continue to
function normally in presence of failures of cluster
members

e Processing of user requests must be
automatically picked up by operational servers

e Reliability is hard:
— Cluster members leave and join
— Networks fail
— Servers die

Solution to Rcliabilitg Problem

Cacheonix provides:

o Data replication

e Even replica storage

e Unique replication protocol

e Instant recovery from failures

Distributed Concurrcncg
Problem

Threads must prevent reading partially updated
shared objects

Threads need to coordinate (synchronize)
access to shared objects

Distributed concurrency is hard:
— Servers communicate using a network
— Servers no longer share memory space
— Servers may fail while holding locks

Distributed Concurrcncg
Solution

Cacheonix provides:
e Distributed ReadWriteLocks
o Distributed ConcurrentHashMap

Distributed ReadWritelocks

e Fault-tolerant for liveness

— Locks are released when a lock-holding server
fails or leaves the cluster

e Reliable for high availability

— Locks are maintained as long as there is at
east a single live server in the cluster

o Strictly consistent

— All servers immediately observe mutual
exclusions

— :\Ie\lx(v members of the cluster observe existing
ocks

Distributed ReadWritelocks

Cacheonix cacheonix = Cacheonix.getInstance();

Cluster cluster = cacheonix.getCluster();

ReadWriteLock readWriteLock = cluster.getReadWriteLock();
Lock readLock = readWriteLock.readLock();
readLock.lock();

try {
// ... Protected code
} finally {

readLock.unlock();

}

Problem of Distributed State
Sharing

e Threads need to access shared state in order to
do useful work

e State sharing in a single JVM is trivial because
of the local memory space

e Distributed state sharing is hard:
— Servers communicate using the network

— Distributed applications no longer share the
memory space

Solution to Distributed State
Sharing Problem

Cacheonix provides:
o Distributed HashMap

Distributed HashMaP

o Strictly consistent

— Guarantees that all servers immediately see
the updates to the data

e Easy to use
— java.util.Map interface
e Reliable

— Retains the data as servers fail or join the
cluster

Dcsigning for Running in Cluster

e Store state shared between threads in Maps.
Convert the code below:

Thread thread = new Thread(new Runnable() {

public void run() {

mySharedState.setMyValue("my.value");
String value = mySharedState.getMyValue();

}
})i
Thread thread = new Thread(new Runnable() {
public void run() {
Cacheonix cacheonix = Cacheonix.getInstance();
Map<String, String> map = cacheonix.getCache("my.shared.state”);
map.put("my.key"”, "my.value");
String value = map.get("'my.key");
}
})i

Failure Managcment

Distributed applications experience failures not seen by
single-JVM applications because networks are unreliable
and servers die

. E?/el?(t: Cluster partitioning causes a minority cluster to
0C

e Result: distributed operations may block for extended
periods of time to avoid consistency errors

e Event: Cluster reconfiguration leads to leaving the
minority cluster and joining the majority cluster

e Result: Locks and other consistent operations in
progress are no longer valid and must be cancelled

Failure Managcment

Cacheonix:

Provides an ability to report a blocked cluster
state for communicating it to the end user

Detects change in cluster configuration (joining
other cluster) and cancel consistent operations
by throwm? exceptions (lock()/unlock() and

put()/get()

Helﬁs to prepare the application for dealing with
such conditions, minimally gracefully reporting a
error to the user.

Cluster Managcmcnt and
Data Distribution Protocol

Cacheonix protocol:

e Symmetric clustering
— No single point of failure

o Wire-level
— Highest possible speed
e Data distribution

— Reliable
— Strictly consistent

Cluster Managcmcnt and
Data Distribution Protocol

Cacheonix protocol enables:

e Distributed caching,

Data replication,

Reliable distributed locks,
Consistent state sharing and
Cluster management

X

Usprs

S

Distributed Architecture

Load Balancer

| |
Server 0 v Server N v
Web Application » Web Application
Distributed Distributed
Front Cache - - < g Front Cache
Distributed - aﬁ:;f:em Distributed
Business Logic =4 Hash Map {=—{jp| D ais -}~ Hash Map |« Business Logic
and Locks Distribution and Locks
* Protocol *

Data Tier Data Tier
(ORM (ORM
Framework) Framework)
Distributed Distributed
Level 2 Cache - - * - Level 2 Cache

v

Single Source of
Truth (Database)

Tgi nglt All Togcthcr:
Distributed Data Management
Framework Cacheonix

Cacheonix
. Strictly- y
Bel!able Distributed Data consistent Bel!able Cluster
Distributed oL Distributed E
Cache Processing with Distributed ReadWriteLock vent
Affinity API HashMap API
API AP API

SR B B B

Cluster Management and Data Distribution Protocol

4

- e -

How about singlc-——servcr
applications?

X

Usgrs

& Notwork 3

Web Application

Y

Local Front Cache

Y

Sin gle~5<:rver Architecture

Business Logic

Y

Local Hash Map and
Locks

Data Tier
(ORM Framework)

v

Local Level 2 Cache

Y

Single Source of
Truth (Database,
Hadoop, etc)

Vertical Scalabilitg

e Vertical scalability is handling additional

load by adding more power to a single
machine

e Vertical scalability is trivial to achieve. Just
switch to a faster CPU, add more RAM or
replace an HDD with an SSD

e Vertical scalability can be limited by
bottlenecks:

— Databases
— Expensive calculations

ALY

Scaling Ver*l:ica"g with Cacheonix

e (Cacheonix provides a fast local cache
— Eliminates database bottlenecks
— Improves performance
— Prepares for scaling in a cluster

e Use cases
— Local front cache
— Local query cache

— Local L2 cache for Hibernate, MyBatis and
DataNucleus

Q& A

Cacheonix
OPcn Source Distributed Data
Managcmcnt Framework

Ease of development, « State sharing in a cluster,
Reliable distributed cache, < Distributed ConcurrentHashMap,
Strict data consistency, Cluster management,

Replicated distributed locks, ¢ Fast local cache,

And more!

Download Cacheonix at
downloads.cacheonix.org

Cacheonix wiki:
wiki .cachconix.org

